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Introduction and ShardStore
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ShardStore and S3
• The core of S3 are storage node servers


• ShardStore — new key-value storage node


• 40k lines of code in Rust


• Crash consistency and concurrency in the implementation


• Slowly rolling out to replace previous version
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Validation goals
• Functional API correcteness


• Crash consistency of on disk data


• Concurrent correctness of API calls and background tasks


Soundness-correctness trade-off — willing to accept weaker guarantees than 
formal methods
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ShardStore
• Log-Structured Merge Tree 

(LSM)


• Data in chunks, chunks in 
extents


• More than one log 
complicates crash consistency


• Garbage collection (GC) 
in the background
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Figure 1. ShardStore’s on-disk layout 



Validating a Storage System 
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Properties
• Focus on durability and consistency


• Performance and availability is out of scope


• Additional safety properties — undefined behavior, bounds checking, etc


Results must outlive involvement of formal methods experts and be 
supported by development team in the future 
     => lightweight approach to formal methods
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Three views on durability
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Section

Sequential Crash-free “4 Conformance Checking”

Sequential With crashes “5 Checking Crash Consistency”

Concurrent Crash-free
“6 Checking Concurrent 
Executions”

Concurrent With crashes Out of scope



Reference model
• Executable specification with the same interface in Rust


• 1% of the size of the implementation


• For simplicity omits implementation failures (IO, resource exhaustion, etc)


• Also used as a mock for unit tests, to help keep it up-to-date
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Conformance Checking 
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Property-based testing
• Implementation code refines the model


• Argument bias to steer into interesting states


• Default to random selection, only bias if have quantitative evidence 
of the benefit


• Code coverage to identify blind spots in tests
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Failure injection
• Fail-stop crash


• Covered in “5 Checking Crash Consistency”


• Disk IO error


• Relax check against the model


• Resource exhaustion


• Out of scope for property-based testing
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Checking Crash Consistency
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Write path
Crash consistency is the primary motivation for this effort


Every put operation has three steps:


1. Write chunked data to an extent


2. Write index entry in the LSM tree


3. Update LSM tree metadata to point to new on-disk index data
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Dependency graph
• Inspired by soft updates


• IO scheduler respects dependencies


• Next append only issued if dependency is persisted
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Figure 2 (a) Dependency Graph



Two properties
Persistence — if dependency is persisted, it should be visible after the crash


Forward progress — after non-crash shutdown every operation’s dependency 
is persistent
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Extending property-based testing
• Add new operations to model (e.g. DirtyReboot, IndexFlush)


• Adding block-level crash states proved to be slow and did not uncover new 
bugs


• Block level crashes are not used by default
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Checking Concurrent Executions 
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Checking Concurrent Executions
Checking for linearizability


Hand-written harness to validate key properties


• Loom model checker for Rust with sound model checking (slow)


• Shuttle model checker with probabilistic algorithms (faster)


Loom and Shuttle offer a soundness-scalability trade-off
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Other Properties
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Other properties
• Undefined behavior


• Miri interpreter for Rust


• Rust compiler dynamic analysis tools


• Serialization


• Crux symbolic execution engine to prove panic-freedom


• Fuzzing
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Experience and Lessons
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Experience
• Developing the reference model took ~ 2 x 9 months of FM experts


• Non-experts contributed 18% of the model code so far


Benefits:


• Early detection is a great


• Continuous integration/validation keeps the model up-to-date

25



Limitations
• Hard to evaluate coverage by property-based tests


• Accidental complexity gluing with S3 not covered


• Huge API surface — not everything is covered
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Testing distributed systems
Curated list of resources on testing distributed systems 
https://asatarin.github.io/testing-distributed-systems/
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https://asatarin.github.io/testing-distributed-systems/


The end
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Contacts
• Follow me on Twitter @asatarin 


• https://www.linkedin.com/in/asatarin/ 


• https://asatarin.github.io/
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