
Understanding, Detecting and Localizing
Partial Failures in Large System Software
By Chang Lou, Peng Huang, and Scott Smith

Presented by Andrey Satarin, @asatarin

May, 2022

https://asatarin.github.io/talks/2022-05-understanding-partial-failures/

https://twitter.com/asatarin
https://asatarin.github.io/talks/2022-05-understanding-partial-failures/

Outline
• Understanding Partial Failures

• Catching Partial Failures with Watchdogs

• Generating Watchdogs with OmegaGen

• Evaluation

• Conclusions

•

2

Understanding Partial Failures

3

Partial Failure
A partial failure — a failure in a process P when a fault does not crash P, but
causes safety or liveness violation or severe slowness for some functionality

• It’s process level, not node level

• Process is still alive, this is not a fail-stop failure

• Could be missed by usual health checks

• Can lead to catastrophic outage

4

Failure Hierarchy

5

Fail-stop

Omission failure

Fail-recover

Byzantine failure

Failure Hierarchy

6

Fail-stop

Omission failure

Fail-recover

Byzantine failure

 Partial failure

Questions
• How do partial failures manifest in modern systems?

• How to systematically detect and localize partial failures at runtime?

7

8

Findings 1-2
Finding 1: In all the five systems, partial failures appear throughout release
history (Table 1). 54% of them occur in the most recent three years’ software
releases.

Finding 2: The root causes of studied failures are diverse. The top three
(total 48%) root cause types are uncaught errors, indefinite blocking, and
buggy error handling.

9

Findings 3-5
Finding 3: Nearly half (48%) of the partial failures cause some functionality to
be stuck.

Liveness violations are straightforward to detect

Finding 4: In 13% of the studied cases, a module became a “zombie” with
undefined failure semantics.

Finding 5: 15% of the partial failures are silent (including data loss,
corruption, inconsistency, and wrong results).

10

Findings 6-7
Finding 6: 71% of the failures are triggered by some specific environment
condition, input, or faults in other processes.

Hard to expose with testing => need runtime checking

Finding 7: The majority (68%) of the failures are “sticky” — the process will
not recover from the faults by itself.

11

Catching Partial Failures with
Watchdogs

12

Current Checkers
• Probe checkers

• Execute external API to detect issues

• Signal checkers

• Monitor health indicator provided by the system

13

Issues with Current Checkers
• Probe checkers

• Large API surface can’t be covered with probes

• Partial failures might not be observable at the API level

• Signal checkers

• Susceptible to environment noise

• Poor accuracy

14

Mimic Checkers
• Mimic-style checkers — selects some representative operations from each

module of the main program, imitates them, and detects errors

• Can pinpoint the faulty module and failing instructions

15

Intrinsic Watchdog
• Synchronizes state with the main program via hooks in the program

• Executes concurrently with the main program

• Lives in the same address space as the main program

• Generated automatically

16

17

Generating Watchdogs with OmegaGen

18

Generating Watchdogs
• Identify long-running methods (1)

• Locate vulnerable operations (2)

• Reduce main program (3)

• Encapsulate reduced program with context factory and hooks (4)

• Add checks to catch faults (5)

19

20

Validate Impact of Caught Faults
• Runs validation step to reduce false alarms

• Default validation is to re-run the check

• Supports manually written validation

21

Preventing Side Effects
• Redirect I/O for writes

• Idempotent wrappers for reads

• Re-write socket operations as ping

• If I/O to a another large system => better to apply OmegaGen on that
system

22

Evaluation

23

Questions
• Does our approach work for large software?

• Can the generated watchdogs detect and localize diverse forms of real-
world partial failures?

• Do the watchdogs provide strong isolation?

• Do the watchdogs report false alarms?

• What is the runtime overhead to the main program?

24

Detection
• Collected and reproduced 22 real-world failures in six systems

• Built-in (baseline) detectors did not detect any partial failures

• Detected 20 out of 22 partial failures with the median detection time
of 5 seconds

• Highly effective against liveness issues — deadlocks, indefinite blocking

• Effective against explicit safety issues — exceptions, errors

25

Localization
• Directly pinpoint the faulty instruction for 55% (11/20) of the detected

cases

• For 35% (7/20) of detected cases, either localize to some program point
within the same function or some function along the call chain

• Probe or signal detectors can only pinpoint the faulty process

26

False Alarms
• The false alarm ratio is calculated from total false failure reports divided by

the total number of check executions.

• The watchdogs and baseline detectors are all configured to run checks
every second

• Can false alarm ratio be traded for detection time? (Median detection time
is 5 seconds)

27

28

29

Conclusions

30

Conclusions
• Study of 100 real-world partial failures in popular software

• OmegaGen to generate watchdogs from code

• Generated watchdogs detect 20/22 partial failures and pinpoint scope
in 18/20 cases

• Exposed new partial failure in ZooKeeper

31

The End

32

Contacts
• Follow me on Twitter @asatarin

• https://www.linkedin.com/in/asatarin/

• https://asatarin.github.io/

33

https://twitter.com/asatarin
https://www.linkedin.com/in/asatarin/
https://asatarin.github.io/

References
• Self reference for this talk (slides, video, etc)

• "Understanding, Detecting and Localizing Partial Failures in Large System
Software" paper

• Talk at NSDI 2020

• Post from The Morning Paper blog

34

https://asatarin.github.io/talks/2022-05-understanding-partial-failures/
https://www.usenix.org/conference/nsdi20/presentation/lou
https://youtu.be/FZj_5fNZfcI
https://blog.acolyer.org/2020/03/16/omega-gen/

