Understanding, Detecting and Localizing
Partial Failures in Large System Software

By Chang Lou, Peng Huang, and Scott Smith

Presented by Andrey Satarin, @asatarin
May, 2022

https://asatarin.github.io/talks/2022-05-understanding-partial-failures/

https://twitter.com/asatarin
https://asatarin.github.io/talks/2022-05-understanding-partial-failures/

Outline

- Understanding Partial Failures

- Catching Partial Failures with Watchdogs
- Generating Watchdogs with OmegaGen
- Evaluation

- Conclusions

Understanding Partial Failures

Partial Failure

A partial failure — a failure in a process P when a fault does not crash P, but
causes safety or liveness violation or severe slowness tor some functionality

't's process level, not node level
Process is still alive, this is not a fail-stop failure
Could be missed by usual health checks

Can lead to catastrophic outage

Failure Hierarchy

Fall-recover

Omission failure Byzantine failure

Failure Hierarchy

Fall-recover

Partial fallure

Omission failure Byzantine failure

Questions

How do partial failures manifest in modern systems?

How to systematically detect and localize partial failures at runtime?

Software Lang. Cases Ver.s (Range) Date Range

ZooKeeper Java 20 17 (3.2.1-3.5.3) 12/01/2009-08/28/2018
Cassandra Java 20 19 (0.7.4-3.0.13) 04/22/2011-08/31/2017
HDFES Java 20 14 (0.20.1-3.1.0) 10/29/2009-08/06/2018
Apache C 20 16 (2.0.40-2.4.29) 08/02/2002-03/20/2018
Mesos C++ 20 11(0.11.0-1.7.0) 04/08/2013—-12/28/2018

Table 1: Studied software systems, the partial failure cases, and the
unique versions, version and date ranges these cases cover.

Findings 1-2

Finding 1: In all the five systems, partial failures appear throughout release
history (Table 1). 54% of them occur in the most recent three years’ software

releases.

Finding 2: The root causes of studied failures are diverse. The top three
(total 48%) root cause types are uncaught errors, indefinite blocking, and

buggy error handling.

Findings 3-5

Finding 3: Nearly half (48%) of the partial failures cause some functionality to
be stuck.

Liveness violations are straightforward to detect

Finding 4: In 13% of the studied cases, a module became a “zombie” with
undefined failure semantics.

Finding 5: 15% of the partial failures are silent (including data loss,
corruption, inconsistency, and wrong results).

10

Findings 6-7

Finding 6: 71% of the tailures are triggered by some specific environment
condition, input, or faults in other processes.

Hard to expose with testing => need runtime checking

Finding 7: The majority (68%) of the failures are “sticky” — the process will
not recover from the taults by itself.

11

Catching Partial Failures with
Watchdogs

Current Checkers

- Probe checkers
. Execute external APl to detect issues
- Signal checkers

- Monitor health indicator provided by the system

13

Issues with Current Checkers

- Probe checkers

- Large API surface can’t be covered with probes

- Partial failures might not be observable at the API level
- Signal checkers

- Susceptible to environment noise

- Poor accuracy

14

Mimic Checkers

Mimic-style checkers — selects some representative operations from each
module of the main program, imitates them, and detects errors

Can pinpoint the faulty module and failing instructions

15

Intrinsic Watchdog

- Synchronizes state with the main program via hooks in the program
- Executes concurrently with the main program
- Lives in the same address space as the main program

- Generated automatically

16

address space

O Request | | Snapshot®) [Replicationy | o \vatchdog
__y_s.t_epgr_ 4 Manager/ O Englne hooks
.’ Compaction
: __lNorker
RN Report

. * Failed checker
malin « Saved context
program

N - N
W ' Fa!lure alert

Figure 4: An intrinsic watchdog example.

17

Generating Watchdogs with OmegaGen

Generating Watchdogs

- |dentity long-running methods (1)
- Locate vulnerable operations (2)
- Reduce main program (3)

- Encapsulate reduced program with context factory and hooks (4)

- Add checks to catch taults (5)

19

1
2
3
-
5
6
1
8
9

}

public class SyncRequestProcessor {

1

publ%c void rgn() { | 2
while (running) { @) identify long-running region 3
if (logCount > (snapCount / 2)) l 4
zks.takeSnapshot(); | 5

e © reduce ’

} | -

} 8
|

10 public class DataTree c) reduce IlO
11 public void OutputArchive oa, ...) { 11

12
13
14
15
16
17
18
19
20
21 }

}

|12

String children[] = null;

13
synchronized (node) { : -
ScouDE+s €) locate vulnerable operations 15
oa.writeRecord(node, "node"); 1?
children = node.getChildren(); Il8
} |19
“ e o 20
+ ContextManger.serializeNode reduced |21
_args setter(oa, node);

22
@ insert context hooks 23)

(a) A module 1n main program

public class SyncRequestProcessor$Checker {

public static void serializeNode reduced (
OutputArchive arg0, DataNode argl) {
arg0.writeRecord(argl, "node");

}
public static void serializeNode invoke() {
Context ctx = ContextManger. Q generate
serializeNode reduced context(); context
if (ctx.status == READY) { factory
OutputArchive arg0 = ctx.args getter(0);
DataNode argl = ctx.args getter(1l);
serializeNode reduced(arg0, argl);
}
}

public static void takeSnapshot reduced() {
serializeList invoke();
serializeNode invoke();

}
public static Status checkTargetFunctionO()

: 9 add fault signal checks
takeSnapshot reduced();

'

(b) Generated checker

Figure S: Example of watchdog checker OmegaGen generated for a module 1n ZooKeeper.

{

20

Validate Impact of Caught Faults

- Runs validation step to reduce false alarms
. Default validation is to re-run the check

- Supports manually written validation

21

Preventing Side Effects

- Redirect I/O for writes
- ldempotent wrappers for reads
- Re-write socket operations as ping

- 1f I/O to a another large system => better to apply OmegaGen on that
system

22

Fvaluation

Questions

Does our approach work for large software?

Can the generated watchdogs detect and localize diverse forms of real-

world partial failures?
Do the watchdogs provide strong isolation?

Do the watchdogs report false alarms?

- What is the runtime overhead to the main program?

24

Detection

+ Collected and reproduced 22 real-world failures in six systems
- Built-in (baseline) detectors did not detect any partial failures

- Detected 20 out of 22 partial failures with the median detection time
of 5 seconds

- Highly effective against liveness issues — deadlocks, indefinite blocking

- Effective against explicit safety issues — exceptions, errors

25

| ocalization

- Directly pinpoint the faulty instruction for 55% (11/20) of the detectea
cases

- For 35% (7/20) ot detected cases, either localize to some program point
within the same function or some function along the call chain

- Probe or signal detectors can only pinpoint the faulty process

26

False Alarms

The false alarm ratio is calculated from total false tfailure reports divided by
the total number of check executions.

The watchdogs and baseline detectors are all configured to run checks
every second

Can false alarm ratio be traded tor detection time? (Median detection time
s 5 seconds)

27

7K CS HF HB MR YN
watch. [0-0.73 0-12 0 0-0.39 0 0-0.31
watch_v. [0-0.01 0 0 0-0.07 O 0
probe |0 0 0 0 0 0
resource | 0-3.4 0-6.3 0.05-3.5 0-3.72 0.33-0.67 0-6.1
signal [3.2-9.6 0 0-0.05 0-0.67 O 0

Table 7: False alarm ratios (%) of all detectors in the evaluated
six systems. Each cell reports the ratio range under three setups
(stable, loaded, tolerable). watch_v: watchdog with validators.

7K CS HF HB MR YN
watch. [0-0.73 0-12 O 0-0.39 0 0-0.31
watch_v. [0-0.01 0 0 0-0.07 O 0
probe |0 0 0 0 0 0
resource | 0-3.4 0-6.3 0.05-3.5 0-3.72 0.33-0.67 0-6.1
signal [3.2-9.6 0 0-0.05 0-0.67 O 0

Table 7: False alarm ratios (%) of all detectors in the evaluated
six systems. Each cell reports the ratio range under three setups
(stable, loaded, tolerable). watch_v: watchdog with validators.

Conclusions

Conclusions

- Study of 100 real-world partial failures in popular software
- OmegaGen to generate watchdogs from code

- Generated watchdogs detect 20/22 partial failures and pinpoint scope
in 18/20 cases

- Exposed new partial failure in ZooKeeper

31

The End

Contacts

. Follow me on Twitter @asatarin

- https://www.linkedin.com/in/asatarin/

- https://asatarin.github.io/

33

https://twitter.com/asatarin
https://www.linkedin.com/in/asatarin/
https://asatarin.github.io/

References

- Selt reterence for this talk (slides, video, etc)

"Understanding, Detecting and Localizing Partial Failures in Large System
Software" paper

. Talk at NSDI 2020

+ Post from The Morning Paper blog

34

https://asatarin.github.io/talks/2022-05-understanding-partial-failures/
https://www.usenix.org/conference/nsdi20/presentation/lou
https://youtu.be/FZj_5fNZfcI
https://blog.acolyer.org/2020/03/16/omega-gen/

