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Understanding Partial Failures
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Partial Failure
A partial failure — a failure in a process P when a fault does not crash P, but 
causes safety or liveness violation or severe slowness for some functionality 

• It’s process level, not node level 

• Process is still alive, this is not a fail-stop failure 

• Could be missed by usual health checks 

• Can lead to catastrophic outage
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Failure Hierarchy
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Questions
• How do partial failures manifest in modern systems? 

• How to systematically detect and localize partial failures at runtime?
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Findings 1-2
Finding 1: In all the five systems, partial failures appear throughout release 
history (Table 1). 54% of them occur in the most recent three years’ software 
releases. 

Finding 2: The root causes of studied failures are diverse. The top three 
(total 48%) root cause types are uncaught errors, indefinite blocking, and 
buggy error handling.
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Findings 3-5
Finding 3: Nearly half (48%) of the partial failures cause some functionality to 
be stuck. 

Liveness violations are straightforward to detect 

Finding 4: In 13% of the studied cases, a module became a “zombie” with 
undefined failure semantics. 

Finding 5: 15% of the partial failures are silent (including data loss, 
corruption, inconsistency, and wrong results).
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Findings 6-7
Finding 6: 71% of the failures are triggered by some specific environment 
condition, input, or faults in other processes. 

Hard to expose with testing => need runtime checking 

Finding 7: The majority (68%) of the failures are “sticky” — the process will 
not recover from the faults by itself. 

11



Catching Partial Failures with 
Watchdogs

12



Current Checkers
• Probe checkers 

• Execute external API to detect issues 

• Signal checkers 

• Monitor health indicator provided by the system
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Issues with Current Checkers
• Probe checkers 

• Large API surface can’t be covered with probes 

• Partial failures might not be observable at the API level 

• Signal checkers 

• Susceptible to environment noise 

• Poor accuracy
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Mimic Checkers
• Mimic-style checkers — selects some representative operations from each 

module of the main program, imitates them, and detects errors 

• Can pinpoint the faulty module and failing instructions
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Intrinsic Watchdog
• Synchronizes state with the main program via hooks in the program 

• Executes concurrently with the main program 

• Lives in the same address space as the main program 

• Generated automatically
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Generating Watchdogs with OmegaGen
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Generating Watchdogs
• Identify long-running methods (1) 

• Locate vulnerable operations (2) 

• Reduce main program (3) 

• Encapsulate reduced program with context factory and hooks (4) 

• Add checks to catch faults (5)
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Validate Impact of Caught Faults
• Runs validation step to reduce false alarms 

• Default validation is to re-run the check 

• Supports manually written validation
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Preventing Side Effects
• Redirect I/O for writes 

• Idempotent wrappers for reads 

• Re-write socket operations as ping 

• If I/O to a another large system => better to apply OmegaGen on that 
system
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Evaluation 
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Questions
• Does our approach work for large software? 

• Can the generated watchdogs detect and localize diverse forms of real-
world partial failures?  

• Do the watchdogs provide strong isolation?  

• Do the watchdogs report false alarms?  

• What is the runtime overhead to the main program?
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Detection
• Collected and reproduced 22 real-world failures in six systems 

• Built-in (baseline) detectors did not detect any partial failures 

• Detected 20 out of 22 partial failures with the median detection time 
of 5 seconds 

• Highly effective against liveness issues — deadlocks, indefinite blocking 

• Effective against explicit safety issues — exceptions, errors
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Localization
• Directly pinpoint the faulty instruction for 55% (11/20) of the detected 

cases 

• For 35% (7/20) of detected cases, either localize to some program point 
within the same function or some function along the call chain 

• Probe or signal detectors can only pinpoint the faulty process
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False Alarms
• The false alarm ratio is calculated from total false failure reports divided by 

the total number of check executions. 

• The watchdogs and baseline detectors are all configured to run checks 
every second 

• Can false alarm ratio be traded for detection time? (Median detection time 
is 5 seconds)
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Conclusions
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Conclusions
• Study of 100 real-world partial failures in popular software 

• OmegaGen to generate watchdogs from code 

• Generated watchdogs detect 20/22 partial failures and pinpoint scope 
in 18/20 cases 

• Exposed new partial failure in ZooKeeper
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The End
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