
Understanding and Detecting Software
Upgrade Failures in Distributed Systems
By Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Shan Lu, Ding Yuan

Presented by Andrey Satarin, @asatarin

September, 2022

https://asatarin.github.io/talks/2022-09-upgrade-failures-in-distributed-systems/

https://twitter.com/asatarin
https://asatarin.github.io/talks/2022-09-upgrade-failures-in-distributed-systems/

Outline
• Introduction

• Findings on Severity and Root Causes

• Testing and Detecting

• Conclusions

• Personal Experience and Commentary

2

Introduction

3

Software upgrade failures
Software upgrade failures — failures that only occur during software
upgrade. Never occur under regular execution scenarios.

• Not failure-inducing configurations change

• Not bug in only new version of software

Defects from two versions of software interacting

4

Why upgrade failures are important?
• Large scale — touches the whole system or large part

• Vulnerable context — upgrade is a disruption in itself

• Persistent Impact — can corrupt persistent data irreversibly

• Difficult to expose in house — little focus in testing

5

What was studied?
• Symptoms and severity

• Root causes

• Triggering conditions

• Ways to detect upgrade failures

6

Number of upgrade failures analyzed
• Cassandra — 44

• HBase — 13

• HDFS — 38

• Kafka — 7

Total: 123 bugs

7

• MapReduce — 1

• Mesos — 8

• Yarn — 8

• ZooKeeper — 4

Findings on Severity and Root Causes

8

Finding 1

Upgrade failures have significantly higher priority than
regular failures

Larger share of bugs is high priority compared to non-upgrade failures

9

Finding 2

The majority (67%) of upgrade failures are catastrophic
(i.e., affecting all or a majority of users instead of only a few
of them). This percentage is much higher than that (24%)
among all bugs

• 28% bring down the entire cluster

• Catastrophic data loss or performance degradation

10

Finding 3

Most (70%) upgrade failures have easy-to-observe
symptoms like node crashes or fatal exceptions

11

Finding 4

The majority (63%) of upgrade bugs were not caught before
code release

=> We need to get better at testing upgrades

12

Finding 5

About two thirds of upgrade failures are caused by
interaction between two software versions that hold
incompatible data syntax or semantics assumption

Out of those:

• 60% in persistent data and 40% in network messages

• 2/3 syntax difference and 1/3 semantic difference

13

Finding 6

Close to 20% of syntax incompatibilities are about data
syntax defined by serialization libraries or enum data types.
Given their clear syntax definition interface, automated
incompatibility detection is feasible

14

Finding 10

All of the upgrade failures require no more than 3 nodes
to trigger

[OSDI14] “Simple Testing Can Prevent Most Critical Failures”:

“Finding 3. Almost all (98%) of the failures are guaranteed to manifest on
no more than 3 nodes. 84% will manifest on no more than 2 nodes.”

15

Finding 11

Close to 90% of the upgrade failures are deterministic, not
requiring any special timing to trigger

16

Testing and Detecting

17

Limitations in state of the art
(As presented in the paper)

• Do not solve problem of workload generation

• Testing workloads are designed from scratch (BAD!)

• No mechanism to systematically explore different version combinations,
configuration or update scenarios

18

DUPTester

19

DUPTester
• DUPTester — Distributed system UPgrade Tester

• Simulates 3-node cluster with containers

• Systematically tests three scenarios:

• Full-stop upgrade

• Rolling upgrade

• Adding new node

20

Testing workloads
From section 6.1.2 Testing workload:

“As discussed in Section 5.3, a main challenge facing all existing
systems is to come up with workload for upgrade testing”

DUPTester:

• Using stress testing is straightforward

• Using “unit” testing requires some tricks

21

Using “unit” tests as workload
Two strategies:

• Automatically translate “unit” tests into client-side scripts

• Not guaranteed to translate everything

• Needs function mapping from developers

• Execute on V1 and successfully start on V2

22

DUPChecker

23

DUPChecker
Types of syntax incompatibilities:

• Serialization libraries definition syntax incompatible across versions

• Open source alternatives exist

• Incompatibility of Enum-typed data

24

DUPChecker
Serialization libraries:

• Parses protobuf definitions

• Compares them across versions to find incompatibilities

Enums:

• Data flow analysis to find persisted enums

• Check if enum index is persisted and there are additions/deletions in enum

25

Conclusions

26

Conclusions
• First in-depth analysis of upgrade failures

• Upgrade failures have severe consequences

• DUPTester found 20 new upgrade failures in 4 systems

• DUPChecker detected 800+ incompatibilities in 7 systems

• Apache HBase team requested DUPChecker to be a part of their pipeline

27

Personal Experience and Commentary

28

Upgrades and correctness
• Stress tests usually do not include correctness validation

• Correctness implies correctness with failure injection

• Testing system upgrade implies testing rollback

29

System as a black box

30

System Under Test

Invariants

V1

System as a black box

31

System Under Test

Invariants

V1 V2

Testing workload
From section 6.1.2 Testing workload:

“As discussed in Section 5.3, a main challenge facing all existing
systems is to come up with workload for upgrade testing”

You probably already have workloads to test correctness:

• Stress tests

• Correctness tests (probably Jepsen-like) [Jepsen22]

32

https://jepsen.io/

Upgrade and rollback
• We need to test both upgrade and rollback

• Both operations ideally tested with failure injection

• Probability of exposing bugs ~ “mixed version time”

• We should maximize “mixed version time”

33

Upgrade and rollback

34

V1 V2 V1 V2

Upgrade Rollback

Rollback

Upgrade

Upgrade and rollback

35

V1 V2 V1 V2

Upgrade Rollback

Rollback

Upgrade

Conclusions (2)
• There is certainly value in research and ideas from the paper

• There are additional ways one can improve upgrade testing by leveraging
correctness tests

• System during upgrade == system during normal operation

36

Thank you for your attention

37

References
• Self reference for this talk (slides, video, etc)

https://asatarin.github.io/talks/2022-09-upgrade-failures-in-distributed-
systems

• “Understanding and Detecting Software Upgrade Failures in Distributed
Systems” paper https://dl.acm.org/doi/10.1145/3477132.3483577

• Talk at SOSP 2021 https://youtu.be/29-isLcDtL0

• Reference repository for the paper https://github.com/zlab-purdue/ds-
upgrade

38

https://asatarin.github.io/talks/2022-09-upgrade-failures-in-distributed-systems
https://asatarin.github.io/talks/2022-09-upgrade-failures-in-distributed-systems
https://dl.acm.org/doi/10.1145/3477132.3483577
https://youtu.be/29-isLcDtL0
https://github.com/zlab-purdue/ds-upgrade
https://github.com/zlab-purdue/ds-upgrade

References
• [OSDI14] Simple Testing Can Prevent Most Critical Failures: An Analysis of

Production Failures in Distributed Data-Intensive Systems
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
yuan

• [Jepsen22] https://jepsen.io/

39

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://jepsen.io/

Contacts
• Follow me on Twitter @asatarin

• Other public talks https://asatarin.github.io/talks/

• https://www.linkedin.com/in/asatarin/

40

https://twitter.com/asatarin
https://asatarin.github.io/talks/
https://www.linkedin.com/in/asatarin/

