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Introduction
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Software upgrade failures
Software upgrade failures — failures that only occur during software 
upgrade. Never occur under regular execution scenarios. 

• Not failure-inducing configurations change 

• Not bug in only new version of software 

Defects from two versions of software interacting

4



Why upgrade failures are important?
• Large scale — touches the whole system or large part 

• Vulnerable context — upgrade is a disruption in itself 

• Persistent Impact — can corrupt persistent data irreversibly 

• Difficult to expose in house — little focus in testing
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What was studied?
• Symptoms and severity 

• Root causes 

• Triggering conditions 

• Ways to detect upgrade failures
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Number of upgrade failures analyzed
• Cassandra — 44  

• HBase — 13  

• HDFS — 38  

• Kafka — 7 

Total: 123 bugs
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• MapReduce — 1  

• Mesos — 8  

• Yarn — 8  

• ZooKeeper — 4



Findings on Severity and Root Causes

8



Finding 1

Upgrade failures have significantly higher priority than 
regular failures 

Larger share of bugs is high priority compared to non-upgrade failures
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Finding 2

The majority (67%) of upgrade failures are catastrophic 
(i.e., affecting all or a majority of users instead of only a few 
of them). This percentage is much higher than that (24%) 
among all bugs 

• 28% bring down the entire cluster 

• Catastrophic data loss or performance degradation
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Finding 3

Most (70%) upgrade failures have easy-to-observe 
symptoms like node crashes or fatal exceptions
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Finding 4

The majority (63%) of upgrade bugs were not caught before 
code release 

=> We need to get better at testing upgrades
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Finding 5

About two thirds of upgrade failures are caused by 
interaction between two software versions that hold 
incompatible data syntax or semantics assumption 

Out of those: 

• 60% in persistent data and 40% in network messages 

• 2/3 syntax difference and 1/3 semantic difference
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Finding 6

Close to 20% of syntax incompatibilities are about data 
syntax defined by serialization libraries or enum data types. 
Given their clear syntax definition interface, automated 
incompatibility detection is feasible
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Finding 10

All of the upgrade failures require no more than 3 nodes 
to trigger 

[OSDI14] “Simple Testing Can Prevent Most Critical Failures”: 

“Finding 3. Almost all (98%) of the failures are guaranteed to manifest on 
no more than 3 nodes. 84% will manifest on no more than 2 nodes.” 

15



Finding 11

Close to 90% of the upgrade failures are deterministic, not 
requiring any special timing to trigger
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Testing and Detecting
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Limitations in state of the art
(As presented in the paper) 

• Do not solve problem of workload generation 

• Testing workloads are designed from scratch (BAD!) 

• No mechanism to systematically explore different version combinations, 
configuration or update scenarios
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DUPTester
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DUPTester
• DUPTester — Distributed system UPgrade Tester 

• Simulates 3-node cluster with containers 

• Systematically tests three scenarios: 

• Full-stop upgrade 

• Rolling upgrade 

• Adding new node
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Testing workloads
From section 6.1.2 Testing workload: 

“As discussed in Section 5.3, a main challenge facing all existing 
systems is to come up with workload for upgrade testing” 

DUPTester: 

• Using stress testing is straightforward 

• Using “unit” testing requires some tricks
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Using “unit” tests as workload
Two strategies: 

• Automatically translate “unit” tests into client-side scripts 

• Not guaranteed to translate everything 

• Needs function mapping from developers 

• Execute on V1 and successfully start on V2
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DUPChecker
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DUPChecker
Types of syntax incompatibilities: 

• Serialization libraries definition syntax incompatible across versions 

• Open source alternatives exist 

• Incompatibility of Enum-typed data
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DUPChecker
Serialization libraries: 

• Parses protobuf definitions 

• Compares them across versions to find incompatibilities 

Enums: 

• Data flow analysis to find persisted enums 

• Check if enum index is persisted and there are additions/deletions in enum

25



Conclusions
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Conclusions
• First in-depth analysis of upgrade failures 

• Upgrade failures have severe consequences 

• DUPTester found 20 new upgrade failures in 4 systems 

• DUPChecker detected 800+ incompatibilities in 7 systems 

• Apache HBase team requested DUPChecker to be a part of their pipeline
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Personal Experience and Commentary
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Upgrades and correctness
• Stress tests usually do not include correctness validation 

• Correctness implies correctness with failure injection 

• Testing system upgrade implies testing rollback
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System as a black box
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System as a black box
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Testing workload
From section 6.1.2 Testing workload: 

“As discussed in Section 5.3, a main challenge facing all existing 
systems is to come up with workload for upgrade testing” 

You probably already have workloads to test correctness:  

• Stress tests 

• Correctness tests (probably Jepsen-like) [Jepsen22]

32

https://jepsen.io/


Upgrade and rollback
• We need to test both upgrade and rollback 

• Both operations ideally tested with failure injection 

• Probability of exposing bugs ~ “mixed version time” 

• We should maximize “mixed version time”
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Upgrade and rollback
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Upgrade and rollback
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Conclusions (2)
• There is certainly value in research and ideas from the paper 

• There are additional ways one can improve upgrade testing by leveraging 
correctness tests 

• System during upgrade == system during normal operation
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Thank you for your attention
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