
How to Fight Production Incidents?
An Empirical Study on a Large-scale Cloud
Service

By Supriyo Ghosh, Manish Shetty, Chetan Bansal, Suman Nath

Presented by Andrey Satarin (@asatarin)

January, 2023

https://asatarin.github.io/talks/2023-01-how-to-fight-incidents/

https://twitter.com/asatarin
https://asatarin.github.io/talks/2023-01-how-to-fight-incidents/

Outline
• Methodology

• Root causes and mitigation

• What causes delays in response?

• Lessons learnt

• Multi-dimensional analysis

• Conclusions

2

Methodology

3

Incidents to study
• 152 incidents from Microsoft Teams

• Analyze root causes, detection and mitigation approaches

• Only incidents with complete postmortem report

• High severity only: 1 incident SEV0, ~30% SEV1, ~70% SEV2

4

Factors to study
• Root Cause — What issue caused the incident?

• Mitigation Steps — What steps were performed to restore service health?

• Detection Failure — Why did monitoring not detect the incident?

• Mitigation Failure — What challenges delayed incident mitigation?

• Automation Opportunities — What automation can help improve service resilience?

• Lessons for Resiliency — What lessons were learnt about the service’s behavior and
improving resiliency?

5

Threat to validity
• Microsoft already uses some effective tools and techniques to proactively

mitigate many types of incidents

• About 35% of incidents were filtered out because did not have complete
postmortem

• Microsoft-Teams only incidents

6

Root causes and mitigation

7

Root causes
• Code Bug — 27.0 %

• Dependency Failure — 16.4 %

• Infrastructure — 15.8 %

• Deployment Error — 13.2 %

8

• Config Bug — 12.5 %

• Database/Network — 10.5 %

• Auth Failure — 4.6 %

Finding #1
• While 40% incidents were root caused to code or configuration bugs,

a majority (60%) were caused due to non-code related issues in
infrastructure, deployment, and service dependencies.

• 40 % = Code Bug (27.0 %) + Config Bug (12.5 %)

9

Mitigation steps
• Rollback - 22.4 %

• Infra Change - 21.1 %

• External Fix - 15.8 %

• Config Fix - 13.2 %

10

• Ad-hoc Fix - 11.8 %

• Code Fix - 7.9 %

• Transient - 7.9 %

Finding #2
• Although 40% incidents were caused by code/configuration bugs, nearly

80% of incidents were mitigated without a code or configuration fix.

• 80 % = 100 % - Config Fix (13.2 %) - Code Fix (7.9 %)

11

Finding #3
• Mitigation via roll back, infrastructure scaling, and traffic failover account for

more than 40% of incidents, indicating their popularity for quick mitigation.

• 40 % = Rollback (22.4 %) + Infra Change (21.1 %)

12

What causes delays in response?

13

Finding #5
• The time-to-detect code bugs and dependency failures is significantly

higher than other root causes, indicating inherent difficulties in monitoring
such incidents.

14

Finding #6
• Manually fixing code and configuration take significantly higher time-to-

mitigate, when compared to rolling back changes. This supports the
popularity of the latter method for mitigation.

15

Detection failure
• Not Failed — 52.0 %

• Unclear — 11.8 %

• Monitor Bug — 10.5 %

• No Monitors — 8.6 %

16

• Telemetry Coverage — 8.6 %

• Cannot Detect — 4.6 %

• External Effect — 4.0 %

Finding #7
• 17 % of incidents either lacked monitors or telemetry coverage, both of

which result in significant detection delays.

• 17 % = No Monitors (8.6 %) + Telemetry Coverage (8.6 %)

17

Mitigation failure category
• Not Failed — 27.6 %

• Unclear — 27.6 %

• Documents-Procedures — 10.5 %

• Deployment Delay — 10.5 %

18

• Manual Effort — 9.2 %

• Complex Root Cause — 7.2 %

• External Dependency — 7.2 %

Finding #8
• While complex root causes can affect time-to-mitigate, 30% of incidents

had mitigation delays even after identifying the root cause due to poor
documentation, procedures, and manual deployment steps.

19

Lessons learnt

20

Automation opportunities
• Unclear — 32.2 %

• Manual Test — 25.7 %

• None — 15.1 %

• Auto Alert/Triage — 15.1 %

• Config Test — 5.9 %

• Auto Deployment — 5.9 %

21

Finding #9
• Improving testing was a popular choice for automation opportunities,

over monitoring, indicating a need to reduce incidents by identifying issues
before they reach production services.

22

Lesson learnt category
• Unclear — 37.5 %

• Improve Monitoring — 15.8 %

• Behavioral Change — 11.8 %

• External Coordination — 10.5 %

23

• Improve Testing — 9.9 %

• Documents/Training — 7.9 %

• Auto Mitigation — 6.6 %

Finding #10
• While improving monitoring/testing accounts for majority of the lessons

learnt, a significant ≈20% feedback indicated improved documentation,
training, and practices for better incident management and service
resiliency.

• 20 % = Behavioral Change (11.8 %) + Documents/Training (7.9 %)

24

Multi-dimensional analysis

25

Finding #11
• 70% of incidents with no monitors were root caused to code bugs, i.e., it is

inherently difficult to monitor regressions introduced due to code changes.

• => For code changes, we should improve testing rather than relying on
monitoring.

26

Finding #12
• 42% of incidents that cannot be detected by monitoring today, were

associated with dependency failures

• => There is a need to introduce/increase monitoring coverage and
observability across related services.

27

Finding #13
• 47% of configuration bugs mitigated with a rollback compared to

a lesser 21% mitigated with a configuration fix; i.e., A large portion of
misconfigurations are due to recent changes

• => They can be identified by rigorous configuration testing.

28

Finding #14
• 21% of incidents where manual effort delayed mitigation, expected

improvements in documentation and training.

• => Just like with source code, we need to design new metrics and methods
to monitor documentation quality. Also, automating repeating mitigation
tasks can reduce manual effort and on-call fatigue.

29

Finding #15
• 25% of incidents where mitigation delay was due to manual deployment

steps, expected automated mitigation steps to manage service
infrastructure (like traffic-failover, node reboot, and auto-scaling).

30

Conclusions

31

Conclusions
• 152 incident reports studied

• Identified potential automation opportunities

• Multi-dimensional analysis uncovers important insights for improving
reliability

•

32

33

https://twitter.com/MSFT365Status/status/1618178407316987905

https://twitter.com/MSFT365Status/status/1618178407316987905

Today’s outage
> We've rolled back a network change
Mitigation strategy — Rollback (22.4 %)

> We've rolled back a network change
Root cause — Database/Network (10.5 %)

> We’re monitoring the service as the rollback takes effect

34

References

35

References
• Self reference for this talk (slides, video, etc)

https://asatarin.github.io/talks/2023-01-how-to-fight-incidents/

• “How to fight production incidents?: an empirical study on a large-scale
cloud service” paper https://dl.acm.org/doi/10.1145/3542929.3563482

36

https://asatarin.github.io/talks/2023-01-how-to-fight-incidents/
https://dl.acm.org/doi/10.1145/3542929.3563482

Contacts
• Follow me on Twitter @asatarin

• Follow me on Mastodon https://discuss.systems/@asatarin

• Profession profile https://www.linkedin.com/in/asatarin/

• Other public talks https://asatarin.github.io/talks/

37

https://twitter.com/asatarin
https://discuss.systems/@asatarin
https://www.linkedin.com/in/asatarin/
https://asatarin.github.io/talks/

